EMC ON A SMALL MILL

OR
AN OVERVIEW OF A CNC CONTROLLED MILL
OR
HOW TO CONVERT A MILL TO CNC CONTROL

EMC2,

A FREE AND POWERFUL MACHINE CONTROLLER

OVERVIEW

- ☐ SMALL MILL CONVERSION
- THE MILL AND IT'S CONTROL
- THE HARDWARE AND SOFTWARE
- ☐ CONTROL SOFTWARE WHERE DOES IT FIT IN?
- HOW TO USE IT

MY BACKGROUND (OR LACKTHEREOF)

- COMPLETELY OUTSIDE OF CNC, MACHINE CONTROL, OR METALWORKING. NO MACHINING BACKGROUND AT ALL.
- ☐ ENGINEERING BACKGROUND IN IP NETWORK PROTOCOLS
 AND WIDE AREA NETWORK DESIGN ... NO HELP THERE!
- ☐ I HAVE DONE SOME WOOD WORKING
- ☐ IAM INTERESTED IN ROBOTICS (MACHINE CONTROL)
- BASICALLY, IF I CAN DO IT ... SO CAN YOU!

MY EMCO FI CNC

R&D

Pos.	Ref. No.	DIN	Benennung	Description
1-15	F1A 030 000		Gruppe Kreuzschlitten	Cross slide compl.
1 2	ZSR 12 o612 F1A o3o o3o	M6×12 DIN 912-6.9	Zylinderschraube Frästisch	Socket head screw Milling table
3+4	F1A o31 oo1	<i>'</i>	X-Spindel komplett	X-spindle complete
4	ZST 51 0408	M4x8 DIN 551-5.8	Gewindestift	Set screw Taper gib short left
5	F1A o2o o5o		Keilleiste kurz links	Taper gib short left Taper gib long left
1	F1A o2o o6o		Keilleiste lang links Keilleiste kurz rechts	
6	F1A o2o 11o			
	F1A o2o 12o	,	Keilleiste lang rechts Kreuzschlitten	Cross slide
7	F1A o3o o2o		Schmiernippel	Grease nipple
8	ZNP o1 2000	A2	Stellschraube	Adjusting screw
9	F1A o2o o7o ZNA 76 o2o4	2x4 DIN 1476-4.6	Kerbnagel	Rivet
10	ZNA 76 0204 ZFD 02 4061	2X4 UIN 1476-4.6	Druckfeder	Compression spring
11	ZFD 02 4061 ZSR 33 0616	M6×12 DIN 933-5.6	Sechskantschraube	Hexagon head screw
13	F1A 030 010	MDX12 DIN 933-5.0	Sockel	Base
14+4	F1A 030 010		Y-Spindel komplett	Y-spindle complete
15	ZSR 12 o525	M5x25 DIN 912-6.9	Zvlinderschraube	Socket head screw
15	23K 12 0323	MOXES DIN SIE GIS	-	
16	ZSR 88 o61o	M6x1o - 1o.9	Linsenschraube	Filister head screw
17	F1A 000 010	1010	Schutzblech 1	Cover sheet 1
18	F1A 000 020		Schutzblech 2	Cover sheet 2
19	ZSR 12 1020	M1ox2o DIN 912-8.8	Zylinderschraube	Socket head screw
20	ZSR 12 1090	M1ox9o DIN 912-109	Zylinderschraube	Socket head screw
21	ZRM 73 48o5	MXL 48 o5o	Zahnriemen	Timing belt
22	ZSR 33 0408	M4x8 DIN 933-5.6	Sechskantschraube	Hexagon head screw
23	F1A 000 160		Motorplatte Y	Motor plate Y
24	F1A 000 150		Motorplatte X	Motor plate X
25	F1A 1o3 ooo		Schrittmotor	Step motor
26	F1A 000 140		Riemenschutz	Belt cover

THESE ARE HELPFUL!

A COUPLE WEEKS LATER

CNC MACHINE CONTROL

DECISIONS DECISIONS

COMPUTER, WIRING, POWER SUPPLIES, CONNECTORS, SWITCHES, ENCLOSURE, CONTROLLERS, BREAKOUT BOARD, STEPPERS, SERVOS AND ENCODERS, OH MY!

DECIDE ON...

- ONTROL SOFTWARE (EMC2, MACH3)
- De Hardware (Build, Buy)
- ☐ MOTORS FOR AXIS, SPINDLE (STEPPERS, SERVOS)
- ☐ MOTOR CONTROLLERS
- ☐ INTERFACE (B.O.B., GPIO)
- ACCESSORIES, WIRING/CABLING

CONTROL SOFTWARE

- ☐ EMC OPEN SOURCE, LOCAL RESOURCES
- RUNS ON LTS VERSION OF UBUNTU (LINUX)
- ☐ LIVECD (OR SOURCE)
- ☐ SUPPORT COMMUNITY (FORUMS, MAILING LIST, IRC)
- WWW.LINUXCHC.ORG

EMC CAPABILITIES

- G-CODE: RS-274NGC
- REAL-TIME MOTION PLANNING SYSTEM
- ☐ PLC (LADDER LOGIC) AND HAL
- 1 9 AXES, SUPPORTS UNUSUAL KINEMATICS
- ☐ CONTROLS TRUE SERVOS WITH EMC CLOSING THE LOOP
- ☐ CUTTER RADIUS/LENGTH COMP., LATHE THREADING,
 RIGID TAPPING

POWERFUL ANALYSIS/TUNING/DEBUG TOOLS

STEPCONF, A STEPPER MOTOR CONFIGUATION WIZARD

DECIDE ON...

- ☐ CONTROL SOFTWARE (EMC2, MACH3)
- PC HARDWARE (BUILD, BUY)
- ☐ MOTORS FOR AXIS, SPINDLE (STEPPERS, SERVOS)
- ☐ MOTOR CONTROLLERS
- ☐ INTERFACE (B.O.B., GPIO)
- ACCESSORIES, WIRING/CABLING

PC HARDWARE

- Build (MINI-BOX

 MOTHERBOARDS), BUY

 (DELL, ETC)
- ☐ EMC WANTS LOW

 LATENCY HARDWARE

DECIDE ON...

- ONTROL SOFTWARE (EMC2, MACH3)
- De Hardware (Build, Buy)
- MOTORS FOR AXIS, SPINDLE (STEPPERS, SERVOS)
- ☐ MOTOR CONTROLLERS
- ☐ INTERFACE (B.O.B., GPIO)
- ACCESSORIES, WIRING/CABLING

MOTORS

- STEPPERS, USUALLY
 CHEAPER (ENCODERS NOT TYPICAL)
- SERVOS, MORE
 TORQUE, ENCODERS

DECIDE ON...

- ONTROL SOFTWARE (EMC2, MACH3)
- De Hardware (Build, Buy)
- ☐ MOTORS FOR AXIS, SPINDLE (STEPPERS, SERVOS)
- MOTOR CONTROLLERS
- ☐ INTERFACE (B.O.B., GPIO)
- ACCESSORIES, WIRING/CABLING

MOTOR CONTROLLERS

STEPPER/SERVOS GECKO, PMDX,
GRANITE, OTHERS

SPINDLE MOTOR - KBIC, MINARIK

DECIDE ON...

- ONTROL SOFTWARE (EMC2, MACH3)
- De Hardware (Build, Buy)
- ☐ MOTORS FOR AXIS, SPINDLE (STEPPERS, SERVOS)
- MOTOR CONTROLLERS
- ☐ INTERFACE (B.O.B., GPIO)
- ACCESSORIES, WIRING/CABLING

INTERFACE

B.O.B - BREAKOUT
BOARD - PARALLEL
PORTPINS

☐ MESA ELECTRONICS FPGA, FIRMWARE

DECIDE ON...

- ONTROL SOFTWARE (EMC2, MACH3)
- De Hardware (Build, Buy)
- ☐ MOTORS FOR AXIS, SPINDLE (STEPPERS, SERVOS)
- ☐ MOTOR CONTROLLERS
- ☐ INTERFACE (B.O.B., GPIO)
- ACCESSORIES, WIRING/CABLING

NEXT STEPS

- MAKE A LIST OF ALL
 STUFF TO GET
- ☐ CAN LOOK AT PRE-BUILT CONTROLLERS (LIKE CAMPBELL), OTHER CONVERSIONS, FOR IDEAS
- THEN ...

2	Description	QTY	Price
3	EMCO F1	1	\$1,200.00
4	RS23-370 Steppers	4	\$186.00
5	Gecko G203V	4	\$387.00
6	KB Elec. KBPB-125	1	\$100.00
7	KB Resistor #9842	1	\$1.00
8	Fan	1	\$16.58
9	Fan power cord	1	\$1.78
10	Fan guard/filter	1	\$2.35
11	circuit breaker	1	\$7.50
12	Switches (pair)	1	\$9.50
13	EPO Switch	1	\$12.25
14	Power supply board	1	\$90.00
15	Transformer	1	\$90.00
16	Parallel port cable	1	\$7.44
17	Ribbon cable	1	\$8.95
18	Mesa card cable	2	\$11.40
19	Computer On/Off	1	\$6.25
20	PC	1	\$175.50
21	Monitor	1	\$100.00
22	Keyboard	1	\$10.00
23	Joystick	1	\$6.99
24	118k resistor for Gecko	3	\$0.53
25	Mesa 7i43 FPGA Bd	1	\$99.00
26	Mesa 7i42	1	\$45.00
27	Mesa 7i47	1	\$69.00
28	Encoders	3	\$89.85
29	Encoder Cables	3	\$21.45
30	Relays (SSR)	2	\$27.98
31	Cable (18/4)	1	\$137.50
32	Conduit/Fittings	1	\$43.00
33			\$2,963.80

MATERIALS

...AND A LITTLE WORK ...

SEVERAL MONTHS LATER

OH, AND YOU NEED A MACHINE

☐ TYPICAL SMALL SYSTEM
- BRIDGEPORT OR SMALLER (OFTEN W/ STEPPERS)

OH, THE MACHINE!

WHAT ARE YOU GOING TO USE THAT FOR?

MAKING SOMETHING

CAD CAM

"Wizards"
Conversational

G-Code

G-CODE

- ☐ G CODE COMMANDS ARE INTERPRETED BY THE
 CONTROLLER WHICH THEN SENDS SIGNALS TO MOVE
 MOTORS, ACTUATE RELAYS OR SOLENOIDS, ETC
- ☐ G CODE IS A CNC PROGRAMMING LANGUAGE
- ☐ EMC IMPLEMENTS RS274NGC
- HAS VARIABLES, SUBROUTINES, IF STATEMENTS, LOOPS

WAYS TO GENERATE G CODE

- WRITEIT
- RUN A WIZARD (CONVERSATIONAL PROGRAMMING)
- USEA CAM PROGRAM (USING A CAD DRAWING)

G CODE PROGRAM

SIMPLE AS:

OR LIKE A PROG. LANG.

N4 G17 G20 G40 G49 N5 G80 G90 N6 (FEATURE FACE) N7 G0 G53 Z0. N8 (MSG,LOAD1.575 ENDMILL ROUGH) N9 T30 M06 N10 S2500 M3 N11 G54 X-2.3 Y-.315 N12 G43 H30 Z1.25 N13 Z.6 N14 G1 Z.4553 F10. N15 X1.9125 N16 G0 Z.6 N17 X-.9125 Y.1575 N18 G1 Z.4553 F10. N19 X2.4125 N20 G0 Z.6 N21 X-2.3 Y-.315 N22 Z.5553 (JOB 1 FACING) (FEATURE FACE) N23 G1 Z.4107 F10. N24 X1.9125 N25 G0 Z.6 N26 X-.9125 Y.1575 N27 G1 Z.4107 F10. N28 X2.4125 N29 G0 Z.6 N30 X-2.3 Y-.315 N31 Z.5107 (JOB 1 FACING) (FEATURE FACE) N32 G1 Z.366 F10. N33 X1.9125 N34 G0 Z.6 N35 X-.9125 Y.1575 N36 G1 Z.366 F10. N37 X2.4125 N38 G0 Z1.25

```
#<ledgeWidth>=0.050
#<ledgeRad>=0.065 (a bit more than 1/16" radius=0.0625, -> 1/8" dia)
(ledge around top, fits into top part, cut with 3/8 tool)
g0 x-0.25 y0 (initial position, for lead in w/cutter comp)
q0 z#<zSafe>
#<first>=1
#<lz>=0 (start at top of part)
#<x1>=[#<0x>+#<ledgeWidth>]
#<x2>=[#<0x>+#<ledgeWidth>+#<ledgeRad>]
#<x3>=[#<ox>+#<xLen>=#<ledgeWidth>=#<ledgeRad>]
#<x4>= [#<ox>+#<xLen>=#<ledgeWidth>]
#<y1>=[#<py>+#<ledgeWidth>]
#<y2>=[#<0y>+#<ledgeWidth>+#<ledgeRad>]
\#<y3>=[\#<oy>+\#<yLen>-\#<ledgeWidth>-#<ledgeRad>]
\#<y4>=[\#<0y>+\#<yLen>-\#<ledgeWidth>]
o15 while [#<|z> GT #<ledgeDepth>]
        (adjust depth per pass)
       #<lz>=[#<lz> - #<doc4>]
       o16 if [#<lz> LT #<ledgeDepth>]
               #<lz>=#<ledgeDepth>
       o16 endif
        (depth now correct)
       o17 if [#<first> EQ 1]
               g1 z#<lz> (drop down)
               g1 g42 x#<x1> y#<y1> (note radius compensation on!)
               g1 x#<x2>
               #<first>=0
               g1 z#<lz> (drop down)
       o17 endif
       (now do one loop around)
       a1 x#<x3>
       g3 x#<x4> y#<y2> i0 j#<ledgeRad>
       g1 y#<y3>
       a3 x#<x3> y#<y4> i[0-#<ledgeRad>] j0
       g1 x#<x2>
       g3 x#<x1> y#<y3> i0 j[0-#<ledgeRad>]
       q1 y#<y2>
       g3 x#<x2> y#<y1> i#<ledgeRad> j0
o15 endwhile
g0 z#<zSafe>
g40 (radius compensation off)
```

WIZARDS - COUNTERBORE

WIZARDS - FACING

CAD

CAM

OPERATION

- ☐ SELECT MACHINE CONFIGURATION TO START EMC
- □ LOAD G-CODE FILE IN AXIS (OR OTHER UI)
- E-STOP OFF
- ☐ HOME/TOUCH OFF
- RUN PROGRAM

AXIS USER INTERFACE

POOR MAN'S MPG

now process axes loadrt sum2 count=2 # one instance for each axis you need to reverse, also che sum2 loaded (will show up under functions in machine->show hal configuration?) addf sum2.0 servo-thread # in my case I needed to reverse the Y and Z axis addf sum2.1 servo-thread $\# \times$ is fine, no need to reverse net joy-x-jog halui.jog.0.analog \Leftarrow input.0.abs-x-position # if no need to reverse, use the following line: #net joy-y-jog halui.jog.1.analog <= input.0.abs-y-position # if needed, reverse the analog so the axis will go in the expected direction setp sum2.0.gain0 -1 net reverse-y sum2.0.in0 ← input.0.abs-y-position net joy-y-jog halui.jog.1.analog ← sum2.0.out # same need to reverse z axis #net joy-z-jog halui.jog.2.analog ← input.0.abs-rz-position setp_sum2.1.gain0 -1 net reverse-z sum2.1.in0 <= input.0.abs-rz-position net joy-z-jog halui.jog.2.analog ⇐ sum2.1.out # a (rotation) axis #net joy-a-jog halui.jog.3.analog ← input.0.abs-a-position # set up e-stop--larger right button marked "2" facing away from operator net joy-estop halui.estop.activate <= input.0.btn-pinkie # spindle on, increase, off # spindle on is "start" button net joy-spindle-on halui.spindle.start <= input.0.btn-base4 # spindle increase is button "1" on right net joy-spindle-increase halui.spindle.increase <= input.0.btn-base2 # spindle decrease is button "1" on left net joy-spindle-decrease halui.spindle.decrease 🗢 input.0.btn-base # spindle stop is button "select" net joy-spindle-stop <u>halui.spindle.stop</u> \Leftarrow <u>input.0.btn-base3</u> #AXIS display of Spindle speed #linksp spindle-vel-fb pyvcp.spindle-speed

linksp spindle-yel-omd pxycp.spindle-speed
#AXIS display of Work Light Control
linksp worklight-ctl pxycp.worklight

☐ MAKE PARTS

☐ ETCH CIRCUIT BOARDS

☐ INSPECT OBJECTS

☐ PLAY MUSIC ??

LEARN MORE

- ☐ DIGITAL MACHINIST CNC WORKSHOP, JUNE 12-24TH @ WASHTENAW COMMUNITY COLLEGE LOOK ON DIGITAL MACHINIST WEB SITE FOR MORE INFO
- YOUR LOCAL MAKER SPACE

 AA: HTTP://WWW.MAKER-WORKS.COM/ NOW

 DTW: HTTP://TECHSHOP.WS/ THIS SUMMER
- ☐ PUBLICATIONS (DIGITAL MACHINIST, HOME SHOP MACHINIST, ETC)

REFERENCES

EMC - HTTP://WWW.LINUXCNC.ORG
DIGITAL MACHINIST - HTTP://WWW.DIGITALMACHINIST.NET
G CODE - HTTP://LINUXCNC.ORG/HANDBOOK/RS274NGC_3/RS274NGC_3TOC.HTML
MESA ELECTRONICS - HTTP://WWW.MESANET.COM/
BOB CAMPBELL DESIGNS - HTTP://CAMPBELLDESIGNS.NET/
KB ELECTRONICS - HTTP://WWW.KBELECTRONICS.COM
GECKO MOTOR CONTROLS - HTTP://WWW.GECKODRIVE.COM/
CNC4PC CONTROLS - HTTP://WWW.CNC4PC.COM/
ALIBRE DESIGN - HTTP://WWW.ALIBRE.COM/
SHEETCAM - HTTP://WWW.SHEETCAM.COM/

THE END